Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2309154, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415385

RESUMO

This work introduces a simplified deposition procedure for multidimensional (2D/3D) perovskite thin films, integrating a phenethylammonium chloride (PEACl)-treatment into the antisolvent step when forming the 3D perovskite. This simultaneous deposition and passivation strategy reduces the number of synthesis steps while simultaneously stabilizing the halide perovskite film and improving the photovoltaic performance of resulting solar cell devices to 20.8%. Using a combination of multimodal in situ and additional ex situ characterizations, it is demonstrated that the introduction of PEACl during the perovskite film formation slows down the crystal growth process, which leads to a larger average grain size and narrower grain size distribution, thus reducing carrier recombination at grain boundaries and improving the device's performance and stability. The data suggests that during annealing of the wet film, the PEACl diffuses to the surface of the film, forming hydrophobic (quasi-)2D structures that protect the bulk of the perovskite film from humidity-induced degradation.

2.
ACS Appl Mater Interfaces ; 15(48): 56500-56510, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991727

RESUMO

Interfaces in perovskite solar cells play a crucial role in their overall performance, and therefore, detailed fundamental studies are needed for a better understanding. In the case of the classical n-i-p architecture, TiO2 is one of the most used electron-selective layers and can induce chemical reactions that influence the performance of the overall device stack. The interfacial properties at the TiO2/perovskite interface are often neglected, owing to the difficulty in accessing this interface. Here, we use X-rays of variable energies to study the interface of (compact and mesoporous) TiO2/perovskite in such a n-i-p architecture. The X-ray photoelectron spectroscopy and X-ray absorption spectroscopy methods show that the defect states present in the TiO2 layer are passivated by a chemical interaction of the perovskite precursor solution during the formation of the perovskite layer and form an organic layer at the interface. Such passivation of intrinsic defects in TiO2 removes charge recombination centers and shifts the bands upward. Therefore, interface defect passivation by oxidation of Ti3+ states, the organic cation layer, and an upward band bending at the TiO2/perovskite interface explain the origin of an improved electron extraction and hole-blocking nature of TiO2 in the n-i-p perovskite solar cells.

3.
Adv Mater ; 35(39): e2302889, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37312254

RESUMO

The most efficient and stable perovskite solar cells (PSCs) are made from a complex mixture of precursors. Typically, to then form a thin film, an extreme oversaturation of the perovskite precursor is initiated to trigger nucleation sites, e.g., by vacuum, an airstream, or a so-called antisolvent. Unfortunately, most oversaturation triggers do not expel the lingering (and highly coordinating) dimethyl sulfoxide (DMSO), which is used as a precursor solvent, from the thin films; this detrimentally affects long-term stability. In this work, (the green) dimethyl sulfide (DMS) is introduced as a novel nucleation trigger for perovskite films combining, uniquely, high coordination and high vapor pressure. This gives DMS a universal scope: DMS replaces other solvents by coordinating more strongly and removes itself once the film formation is finished. To demonstrate this novel coordination chemistry approach, MAPbI3 PSCs are processed, typically dissolved in hard-to-remove (and green) DMSO achieving 21.6% efficiency, among the highest reported efficiencies for this system. To confirm the universality of the strategy, DMS is tested for FAPbI3 as another composition, which shows higher efficiency of 23.5% compared to 20.9% for a device fabricated with chlorobenzene. This work provides a universal strategy to control perovskite crystallization using coordination chemistry, heralding the revival of perovskite compositions with pure DMSO.

4.
Ultramicroscopy ; 250: 113749, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37186986

RESUMO

In the present work we investigate the growth of monolayer MoSe2 on selenium-intercalated graphene on Ru(0001), a model layered heterostructure combining a transition metal dichalcogenide with graphene, using low energy electron microscopy and micro-diffraction. Real-time observation of MoSe2 on graphene growth reveals the island nucleation dynamics at the nanoscale. Upon annealing, larger islands are formed by sliding and attachment of multiple nanometer-sized MoSe2 flakes. Local micro-spot angle-resolved photoemission spectroscopy reveals the electronic structure of the heterostructure, indicating that no charge transfer occurs within adjacent layers. The observed behavior is attributed to intercalation of Se at the graphene/Ru(0001) interface. The unperturbed nature of the proposed heterostructure therefore renders it as a model system for investigations of graphene supported TMD nanostructures.

5.
Materials (Basel) ; 16(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37241458

RESUMO

Hydrogen gas sensors have recently attracted increased interest due to the explosive nature of H2 and its strategic importance in the sustainable global energy system. In this paper, the tungsten oxide thin films deposited by innovative gas impulse magnetron sputtering have been investigated in terms of their response to H2. It was found that the most favourable annealing temperature in terms of sensor response value, as well as response and recovery times, was achieved at 673 K. This annealing process caused a change in the WO3 cross-section morphology from a featureless and homogenous form to a rather columnar one, but still maintaining the same surface homogeneity. In addition to that, the full-phase transition from an amorphous to nanocrystalline form occurred with a crystallite size of 23 nm. It was found that the sensor response to only 25 ppm of H2 was equal to 6.3, which is one of the best results presented in the literature so far of WO3 optical gas sensors based on a gasochromic effect. Moreover, the results of the gasochromic effect were correlated with the changes in the extinction coefficient and the concentration of the free charge carriers, which is also a novel approach to the understanding of the gasochromic phenomenon.

6.
Ultramicroscopy ; 250: 113755, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37216832

RESUMO

We have used low-energy electron microscopy (LEEM), micro-illumination low-energy electron diffraction (µLEED) supported by ab initio calculations, and X-ray absorption spectroscopy (XAS) to investigate in-situ and in real-time the structural properties of Sm2O3 deposits grown on Ru(0001), a rare-earth metal oxide model catalyst. Our results show that samarium oxide grows in a hexagonal A-Sm2O3 phase on Ru(0001), exhibiting a (0001) oriented-top facet and (113) side facets. Upon annealing, a structural transition from the hexagonal to cubic phase occurs, in which the Sm cations exhibit the +3 oxidation state. The unexpected initial growth in the A-Sm2O3 hexagonal phase and its gradual transition to a mixture with cubic C-Sm2O3 showcases the complexity of the system and the critical role of the substrate in the stabilization of the hexagonal phase, which was previously reported only at high pressures and temperatures for bulk samaria. Besides, these results highlight the potential interactions that Sm could have with other catalytic compounds with respect to the here gathered insights on the preparation conditions and the specific compounds with which it interacts.

7.
Cryst Growth Des ; 23(4): 2522-2530, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37065440

RESUMO

La-doped SrTiO3 thin films with high structural quality were homoepitaxially grown by the metal-organic vapor phase epitaxy (MOVPE) technique. Thermogravimetric characterization of the metal-organic precursors determines suitable flash evaporator temperatures for transferring the liquid source materials in the gas phase of the reactor chamber. An adjustment of the charge carrier concentration in the films, which is necessary for optimizing the thermoelectric power factor, was performed by introducing a defined amount of the metal-organic compound La(tmhd)3 and tetraglyme to the liquid precursor solution. X-ray diffraction and atomic force microscopy verified the occurrence of the pure perovskite phase exhibiting a high structural quality for all La concentrations. The electrical conductivity of the films obtained from Hall-effect measurements increases linearly with the La concentration in the gas phase, which is attributed to the incorporation of La3+ ions on the Sr2+ perovskite sites by substitution inferred from photoemission spectroscopy. The resulting structural defects were discussed concerning the formation of occasional Ruddlesden-Popper-like defects. The thermoelectric properties determined by Seebeck measurements demonstrate the high potential of SrTiO3 thin films grown by MOVPE for thermoelectric applications.

8.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112164

RESUMO

Hydrogen is an efficient source of clean and environmentally friendly energy. However, because it is explosive at concentrations higher than 4%, safety issues are a great concern. As its applications are extended, the need for the production of reliable monitoring systems is urgent. In this work, mixed copper-titanium oxide ((CuTi)Ox) thin films with various copper concentrations (0-100 at.%), deposited by magnetron sputtering and annealed at 473 K, were investigated as a prospective hydrogen gas sensing material. Scanning electron microscopy was applied to determine the morphology of the thin films. Their structure and chemical composition were investigated by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. The prepared films were nanocrystalline mixtures of metallic copper, cuprous oxide, and titanium anatase in the bulk, whereas at the surface only cupric oxide was found. In comparison to the literature, the (CuTi)Ox thin films already showed a sensor response to hydrogen at a relatively low operating temperature of 473 K without using any extra catalyst. The best sensor response and sensitivity to hydrogen gas were found in the mixed copper-titanium oxides containing similar atomic concentrations of both metals, i.e., 41/59 and 56/44 of Cu/Ti. Most probably, this effect is related to their similar morphology and to the simultaneous presence of Cu and Cu2O crystals in these mixed oxide films. In particular, the studies of surface oxidation state revealed that it was the same for all annealed films and consisted only of CuO. However, in view of their crystalline structure, they consisted of Cu and Cu2O nanocrystals in the thin film volume.

9.
Dalton Trans ; 51(24): 9291-9301, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670312

RESUMO

An Al2O3/ZnO heterojunction was grown on a Si single crystal substrate by subsequent thermal and plasma-assisted atomic layer deposition (ALD) in situ. The band offsets of the heterointerface were then studied by consecutive removal of the layers by argon sputtering, followed by in situ X-ray photoelectron spectroscopy. The valence band maximum and conduction band minimum of Al2O3 are found to be 1.1 eV below and 2.3 eV above those of ZnO, resulting in a type-I staggered heterojunction. An apparent reduction of ZnO to elemental Zn in the interface region was detected in the Zn 2p core level and Zn L3MM Auger spectra. This suggests an interface formation different from previous models. The reduction of ZnO to Zn in the interface region accompanied by the creation of oxygen vacancies in ZnO results in an upward band bending at the interface. Therefore, this study suggests that interfacial properties such as the band bending as well as the valence and conduction band offsets should be in situ controllable to a certain extent by careful selection of the process parameters.

10.
ACS Appl Mater Interfaces ; 14(10): 12404-12411, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230804

RESUMO

In this work, a switch from n-type to p-type conductivity in electrodeposited Cu3(2,3,6,7,10,11-hexahydroxytriphenylene)2 [Cu3(HHTP2)] has been observed, which is most likely due to oxygen molecular doping. The synthesis of electrically conductive 2D metal-organic frameworks (MOFs) has been achieved through the introduction of highly conjugated organic linkers coordinated to their constituent metal-ion centers. However, the porous structure and unsaturated metal sites in MOFs make them susceptible to ambient adsorbates, which can affect their charge transport properties. This phenomenon has been experimentally investigated by GIXRD, Hall effect and Seebeck measurements, and X-ray photoelectron spectroscopy.

11.
Sci Rep ; 10(1): 22374, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361795

RESUMO

Vanadium dioxide (VO2) features a pronounced, thermally-driven metal-to-insulator transition at 340 K. Employing epitaxial stress on rutile [Formula: see text] substrates, the transition can be tuned to occur close to room temperature. Striving for applications in oxide-electronic devices, the lateral homogeneity of such samples must be considered as an important prerequisite for efforts towards miniaturization. Moreover, the preparation of smooth surfaces is crucial for vertically stacked devices and, hence, the design of functional interfaces. Here, the surface morphology of [Formula: see text] films was analyzed by low-energy electron microscopy and diffraction as well as scanning probe microscopy. The formation of large terraces could be achieved under temperature-induced annealing, but also the occurrence of facets was observed and characterized. Further, we report on quasi-periodic arrangements of crack defects which evolve due to thermal stress under cooling. While these might impair some applicational endeavours, they may also present crystallographically well-oriented nano-templates of bulk-like properties for advanced approaches.

12.
Front Chem ; 7: 57, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30800651

RESUMO

The work is focused on understanding the dynamics of the processes which occur at the interface between ceria and platinum during redox processes, by investigating an inverse catalytic model system made of ceria epitaxial islands and ultrathin films supported on Pt(111). The evolution of the morphology, structure and electronic properties is analyzed in real-time during reduction and oxidation, using low-energy electron microscopy and spatially resolved low-energy electron diffraction. The reduction is induced using different methods, namely thermal treatments in ultra-high vacuum and in H2 as well as deposition of Ce on the oxide surface, while re-oxidation is obtained by exposure to oxygen at elevated temperature. The use of two different epitaxial systems, continuous films and nanostructures, allows determining the influence of platinum proximity on the stabilization of the specific phases observed. The factors that limit the reversibility of the observed modifications with the different oxidation treatments are also discussed. The obtained results highlight important aspects of the cerium oxide/Pt interaction that are relevant for a complete understanding of the behavior of Pt/CeO2 catalysts.

13.
Phys Chem Chem Phys ; 20(29): 19447-19457, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29998237

RESUMO

The thermal reduction of cerium oxide nanostructures deposited on a rhodium(111) single crystal surface and the re-oxidation of the structures by exposure to CO2 were investigated. Two samples are compared: a rhodium surface covered to ≈60% by one to two O-Ce-O trilayer high islands and a surface covered to ≈65% by islands of four O-Ce-O trilayer thickness. Two main results stand out: (1) the thin islands reduce at a lower temperature (870-890 K) and very close to Ce2O3, while the thicker islands need higher temperature for reduction and only reduce to about CeO1.63 at a maximum temperature of 920 K. (2) Ceria is re-oxidized by CO2. The rhodium surface promotes the re-oxidation by splitting the CO2 and thus providing atomic oxygen. The process shows a clear temperature dependence. The maximum oxidation state of the oxide reached by re-oxidation with CO2 differs for the two samples, showing that the thinner structures require a higher temperature for re-oxidation with CO2. Adsorbed carbon species, potentially blocking reactive sites, desorb from both samples at the same temperature and cannot be the sole origin for the observed differences. Instead, an intrinsic property of the differently sized CeOx islands must be at the origin of the observed temperature dependence of the re-oxidation by CO2.

14.
Ultramicroscopy ; 183: 84-88, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28522241

RESUMO

Proper consideration of length-scales is critical for elucidating active sites/phases in heterogeneous catalysis, revealing chemical function of surfaces and identifying fundamental steps of chemical reactions. Using the example of ceria thin films deposited on the Cu(111) surface, we demonstrate the benefits of multi length-scale experimental framework for understanding chemical conversion. Specifically, exploiting the tunable sampling and spatial resolution of photoemission electron microscopy, we reveal crystal defect mediated structures of inhomogeneous copper-ceria mixed phase that grow during preparation of ceria/Cu(111) model systems. The density of the microsized structures is such that they are relevant to the chemistry, but unlikely to be found during investigation at the nanoscale or with atomic level investigations. Our findings highlight the importance of accessing micro-scale when considering chemical pathways over heteroepitaxially grown model systems.

15.
Nanoscale ; 9(27): 9352-9358, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28534898

RESUMO

Cerium oxide is often applied in today's catalysts due to its remarkable oxygen storage capacity. The changes in stoichiometry during reaction are linked to structural modifications, which in turn affect its catalytic activity. We present a real-time in situ study of the structural transformations of cerium oxide particles on ruthenium(0001) at high temperatures of 700 °C in ultra-high vacuum. Our results demonstrate that the reduction from CeO2 to cubic Ce2O3 proceeds via ordered intermediary phases. The final reduction step from cubic to hexagonal Ce2O3 is accompanied by a lattice expansion, the formation of two new surface terminations, a partial dissolution of the cerium oxide particles, and a massive mass transport of cerium from the particles to the substrate. The conclusions allow for new insights into the structure, stability, and dynamics of cerium oxide nanoparticles in strongly reducing environments.

16.
Phys Chem Chem Phys ; 19(5): 3480-3485, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27827476

RESUMO

The growth, morphology, structure, and stoichiometry of ultrathin praseodymium oxide layers on Ru(0001) were studied using low-energy electron microscopy and diffraction, photoemission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. At a growth temperature of 760 °C, the oxide is shown to form hexagonally close-packed (A-type) Pr2O3(0001) islands that are up to 3 nm high. Depending on the local substrate step density, the islands either adopt a triangular shape on sufficiently large terraces or acquire a trapezoidal shape with the long base aligned along the substrate steps.

17.
Nanoscale ; 8(20): 10849-56, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27165117

RESUMO

We have studied (001) surface terminated cerium oxide nanoparticles grown on a ruthenium substrate using physical vapor deposition. Their morphology, shape, crystal structure, and chemical state are determined by low-energy electron microscopy and micro-diffraction, scanning probe microscopy, and synchrotron-based X-ray absorption spectroscopy. Square islands are identified as CeO2 nanocrystals exhibiting a (001) oriented top facet of varying size; they have a height of about 7 to 10 nm and a side length between about 50 and 500 nm, and are terminated with a p(2 × 2) surface reconstruction. Micro-illumination electron diffraction reveals the existence of a coincidence lattice at the interface to the ruthenium substrate. The orientation of the side facets of the rod-like particles is identified as (111); the square particles are most likely of cuboidal shape, exhibiting (100) oriented side facets. The square and needle-like islands are predominantly found at step bunches and may be grown exclusively at temperatures exceeding 1000 °C.

18.
Phys Chem Chem Phys ; 18(1): 213-9, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26601756

RESUMO

We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 165407], at O coverages exceeding 1 monolayer, using the combination of intensity-voltage (I(V)) low-energy electron microscopy (LEEM) and multiple scattering calculations for the (00) beam in the very-low-energy range (E≤ 50 eV) we identified three surface components during the initial Ru oxidation: a (1 × 1)-O chemisorption phase, the RuO2(110) oxide phase, and a surface oxide structure characterized by a trilayer O-Ru-O stacking. Here, we use dark-field LEEM imaging and micro-illumination low-energy electron diffraction in the range of 100 to 400 eV to show that this trilayer phase is actually a RuO2(100)-(1 × 1) phase with possibly mixed O and Ru surface terminations. This identification rationalizes the thermodynamic stability of this phase at elevated temperatures and is consistent with the observation of catalytic activity of the phase in CO oxidation.

19.
ACS Nano ; 9(8): 8468-73, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26171635

RESUMO

The structural modification of the Ru(0001) surface is followed in real-time using low-energy electron microscopy at elevated temperatures during exposure to molecular oxygen. We observe the nucleation and growth of three different RuO2 facets, which are unambiguously identified by single-domain microspot low-energy electron diffraction (µLEED) analysis from regions of 250 nm in diameter. Structural identification is then pushed to the true nanoscale by employing very-low-energy electron reflectivity spectra R(E) from regions down to 10 nm for structural fingerprinting of complex reactions such as the oxidation of metal surfaces. Calculations of R(E) with an ab initio scattering theory confirm the growth of (110), (100), and (101) orientations of RuO2 and explain the shape of the R(E) spectra in terms of the conducting band structure. This methodology is ideally suited to identify the structure of supported ultrathin films and dynamic transformations at multicomponent interfaces down to few nanometer lateral resolution at elevated temperature and in reactive environments.

20.
Nat Mater ; 7(5): 406-11, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391956

RESUMO

Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...